tan(pi/x)

Simple and best practice solution for tan(pi/x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so dont hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for tan(pi/x) equation:

D( x )x = 0cos(pi/x) = 0x = 0x = 0cos(pi/x) = 0cos(pi/x) = 0cos(pi/x) = 0 <=> pi/x = pi*k_1+pi/2 i k_1 należy do It_1 = pi*k_1+pi/2pi/x-t_1 = 0pi*x^-1 = t_1 / : pix^-1 = t_1/pi-1 < 01/(x^1) = t_1/pi / * x^11 = (t_1/pi)*x^1 / : t_1/pi1/(t_1/pi) = x^1x = 1/(t_1/pi)x = 1/(pi*k_1+pi/2/pi) i k_1 należy do Ix in {( -oo : +oo ) / {< 0 : 0 > U < 1/(pi*k_1+pi/2/pi) : 1/(pi*k_1+pi/2/pi) >}} i k_1 -> {I}tan(pi/x) = 0tan(pi/x) = 0 <=> pi/x = pi*k_1 i k_1 należy do It_1 = pi*k_1pi/x-t_1 = 0pi*x^-1 = t_1 / : pix^-1 = t_1/pi-1 < 01/(x^1) = t_1/pi / * x^11 = (t_1/pi)*x^1 / : t_1/pi1/(t_1/pi) = x^1x = 1/(t_1/pi)x = 1/(pi*k_1/pi) i k_1 należy do Ix = 1/(pi*k_1/pi)`