# Derivative of sin(2x)cos(2x)

## Derivative of sin(2x)cos(2x). Simple step by step solution, to learn. Simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the derivative calculator your own function and let us solve it.

## Derivative of sin(2x)cos(2x):

(sin(2*x)*cos(2*x))'

(sin(2*x))'*cos(2*x)+sin(2*x)*(cos(2*x))'

cos(2*x)*(2*x)'*cos(2*x)+sin(2*x)*(cos(2*x))'

cos(2*x)*((2)'*x+2*(x)')*cos(2*x)+sin(2*x)*(cos(2*x))'

cos(2*x)*(0*x+2*(x)')*cos(2*x)+sin(2*x)*(cos(2*x))'

cos(2*x)*(0*x+2*1)*cos(2*x)+sin(2*x)*(cos(2*x))'

2*cos(2*x)*cos(2*x)+sin(2*x)*(cos(2*x))'

2*cos(2*x)*cos(2*x)+sin(2*x)*-sin(2*x)*(2*x)'

2*cos(2*x)*cos(2*x)+sin(2*x)*-sin(2*x)*((2)'*x+2*(x)')

2*cos(2*x)*cos(2*x)+sin(2*x)*-sin(2*x)*(0*x+2*(x)')

2*cos(2*x)*cos(2*x)+sin(2*x)*-sin(2*x)*(0*x+2*1)

2*cos(2*x)*cos(2*x)+sin(2*x)*2*(-sin(2*x))

2*cos(2*x)*cos(2*x)+sin(2*x)*-2*sin(2*x)

2*(cos(2*x))^2-(2*(sin(2*x))^2)

The calculation above is a derivative of the function f (x)