# Derivative of (cos(4x))/(1-sin(4x))

## Derivative of (cos(4x))/(1-sin(4x)). Simple step by step solution, to learn. Simple, and easy to understand, so dont hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the derivative calculator your own function and let us solve it.

## Derivative of (cos(4x))/(1-sin(4x)):

(cos(4*x)/(1-sin(4*x)))'((cos(4*x))'*(1-sin(4*x))-(cos(4*x)*(1-sin(4*x))'))/((1-sin(4*x))^2)(-sin(4*x)*(4*x)'*(1-sin(4*x))-(cos(4*x)*(1-sin(4*x))'))/((1-sin(4*x))^2)(-sin(4*x)*((4)'*x+4*(x)')*(1-sin(4*x))-(cos(4*x)*(1-sin(4*x))'))/((1-sin(4*x))^2)(-sin(4*x)*(0*x+4*(x)')*(1-sin(4*x))-(cos(4*x)*(1-sin(4*x))'))/((1-sin(4*x))^2)(-sin(4*x)*(0*x+4*1)*(1-sin(4*x))-(cos(4*x)*(1-sin(4*x))'))/((1-sin(4*x))^2)(4*(-sin(4*x))*(1-sin(4*x))-(cos(4*x)*(1-sin(4*x))'))/((1-sin(4*x))^2)(-4*sin(4*x)*(1-sin(4*x))-(cos(4*x)*(1-sin(4*x))'))/((1-sin(4*x))^2)(-4*sin(4*x)*(1-sin(4*x))-(cos(4*x)*((-sin(4*x))'+(1)')))/((1-sin(4*x))^2)(-4*sin(4*x)*(1-sin(4*x))-(cos(4*x)*(cos(4*x)*(4*x)'+(1)')))/((1-sin(4*x))^2)(-4*sin(4*x)*(1-sin(4*x))-(cos(4*x)*(cos(4*x)*((4)'*x+4*(x)')+(1)')))/((1-sin(4*x))^2)(-4*sin(4*x)*(1-sin(4*x))-(cos(4*x)*(cos(4*x)*(0*x+4*(x)')+(1)')))/((1-sin(4*x))^2)(-4*sin(4*x)*(1-sin(4*x))-(cos(4*x)*(cos(4*x)*(0*x+4*1)+(1)')))/((1-sin(4*x))^2)(-4*sin(4*x)*(1-sin(4*x))-(cos(4*x)*(4*cos(4*x)+(1)')))/((1-sin(4*x))^2)(-4*sin(4*x)*(1-sin(4*x))-(cos(4*x)*(0-4*cos(4*x))))/((1-sin(4*x))^2)(-4*sin(4*x)*(1-sin(4*x))-(cos(4*x)*-4*cos(4*x)))/((1-sin(4*x))^2)(4*(cos(4*x))^2-(4*sin(4*x)*(1-sin(4*x))))/((1-sin(4*x))^2)`
The calculation above is a derivative of the function f (x)